IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Structure of matrix elements in the quantum Toda chain

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1998 J. Phys. A: Math. Gen. 31 8953
(http://iopscience.iop.org/0305-4470/31/44/019)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.104
The article was downloaded on 02/06/2010 at 07:18

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/31/44
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. Ger31 (1998) 8953-8971. Printed in the UK PIl: S0305-4470(98)94620-0

Structure of matrix elements in the quantum Toda chain
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Abstract. We consider the quantum Toda chain using the method of separation of variables.
We show that the matrix elements of operators in the model are written in terms of a finite
number of ‘deformed Abelian integrals’. The properties of these integrals are discussed. We
explain that these properties are necessary in order to provide the correct number of independent
operators. A comparison with the classical theory is made.

1. Introduction

As became clear recently [1-3] there is a close connection between the formula for the matrix
elements in the integrable field theory (form factors) [4] and the method of separation of
variables developed by Sklyanin [5].

The form factors are typically given by certain integrals. This kind of formula can
be interpreted as follows. Consider an integrable model which allows the separation of
variables. The separated variables naturally split into two equal parts: one of them can be
considered as ‘coordinates’ and another as ‘momenta’ (of course they have nothing to do
with the original canonical variables in which the model is formulated). The formulae for
the form factors are understood as matrix elements written in ‘coordinate’ representation,
i.e. in terms of integrals with respect to the ‘coordinates’.

Another observation made in [6], and used intensively in [1, 2] is that the integrals in
the formulae for the form factors in models with2) Lie—Poisson symmetry (sine-Gordon,
for example) can be considered as deformations of hyperelliptic integrals. This fact must
also be related to the method of separation of variables because the ‘coordinates’ describe
classically a divisor on the spectral hyperelliptic curve. The important conclusion made in
[2] is that these deformed hyperelliptic integrals must have similar properties to the usual
hyperelliptic integral in order that the correct number of equations of motion exists in the
qguantum case.

In paper [3] we performed the quasiclassical analysis of the matrix elements in the
conformal field theory (CFT) in finite volume. This is a much more complicated case than
the case of infinite volume. The method of separation of variables seems to give the only
possible approach to the calculation of form factors. The main difficulty of the problem in
finite volume is due to the fact that the separation of variables leads to the Baxter equations
whose solutions describe the wavefunctions in the ‘coordinate’ representation. So, one must
consider integrals over solutions of Baxter equations.

t Member of CNRS. On leave from Steklov Mathematical Institute, Fontanka 27, St. Petersburg, 191011, Russia.
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In this paper we consider a much simpler model which nevertheless exhibits difficulties
similar to those of integrable field theory in finite volume. This is the periodical Toda
chain. Historically this is the first model to which the method of separation of variables
was applied [5]. In this case the problem of describing the spectrum leads to Baxter
equations with nontrivial solutions in entire functions. The matrix elements are given by
integrals over these solutions. We show that these integrals can be considered as deformed
hyperelliptic integrals allowing a deformation of all the important properties of hyperelliptic
integrals. Similarly to [2] these properties are needed for the correct counting of operators:
they are actually equivalent to the equations of motion.

2. Classical Toda chain

The periodical Toda chain is described by the Hamiltonian:

n p2
H = Lo el 1
5t )
j=1
where p;, g; are canonical variableg,+1 = g1.
The exact solution is due to existence of a Lax representation. Considerdperator

A— Pj» eli
_e*qj7 0

and the monodromy matrix

A(A) B
MQO)=L,(A)...Li(A) = <CE/\; D((A))> .
Obviously, detM (1) = 1. The monodromy matrix satisfies Sklyanin’s Poisson brackets:
{MEM ()} = [r(k — w), M) @ M ()] (2)
where
r(d) = —E.
A

P is the permutation. The coefficients BfA) = tr M (1) are in involution:
{T(W), T(w)}=0.

Moreover,
TO)=A"— PN+ GPP—HV 2+

whereP =} p; is the total momentum an# is the Hamiltonian (1). Thu% (1) generates
n integrals of motion in involution providing complete integrability of the system.

From here on we can forget about the Toda chain saying that we consider an orbit of Lie—
Poisson group [7] i.e. the polynomial matr£(1) with detM (A) = 1 satisfying the Poisson
brackets (2) (determinant is in the centre of these Poisson brackets) and characterized by
certain reality conditions which we shall discuss later.

Let us consider the elements &f(1) in some more details. We introduce the notations

AR =A"+2"ar+ - +a,

B\ =bW" 4+ A"y 4 by g)
C) =AY+ 4 cuyt

DA\ = A""2dy+ -+ d,.
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The variable$ anda; have the Poisson brackets
{a1, b} =b

and Poisson-commute with the rest of the variables. In terms of the Todaahai®? and

b = et describe the motion of the centre of mass. Our nearest concern is the algebra of
observablesd. We define this algebra as the one generated by all the monomials of finite
degree of the variables;, b;, c¢;, d; andb. It is important that the polynomial structure of

M (») introduces grading ofA. Namely, we can prescribe the degie® the variables:;,

bi, ¢;, d; and the degree 0 tb. The degrees of the leading coefficientstafr) and D(1)

are chosen in order that the coefficients of the determinant

detM (M) = A" 2fo+ -+ fa

are homogeneous. The varialblés a kind of a zero-mode, it is of minor dynamical value.
The algebrad contains a subalgebtd, of polynomial functions ot;, b;, d; and¢; = be;.
So, this subalgebra does not havas a separate generator, the change in the definition of
¢; is needed in order that the Poisson brackets are closeti(for D(1), B(») = [Ta—vp)
andC (1) = bC(»). We shall deal only with this subalgebra.

The algebrad, as a vector space splits into a direct sum of subspaces of different
degrees. Let us denote Wn) the dimension of the subspace of the degree The
generating function o8 (n) (character) is given by

1 1 [1] [1] [2n)!
[n]' [n— 1] [n + 10" [n]! [1]

X@) =) smg" =
n=0

where p] = 1—¢", [n]' =[1][2] ...[n]. The first four multipliers come from monomials of
a;, b;, ¢j, d; respectively, the last multiplier comes from the factorization by the condition
detM () = 1.

Notice that

0= ppa (1) e[ 522)) @

where we introduced theg-binomial coefficients

Later we shall provide an interesting interpretation of this formula.

Let us return to a more traditional consideration of the classical Toda chain. We do not
give a complete list of references, which can be found in [5]. For us the important fact
concerning the classical system is that it allows the separation of variables [8, 9]. Consider
zeros of the polynomiaB(}):

n—1
B =b] [0 —¥)
j=1
and the variables\; = D(y;). Notice thatA; = A(y;) where A(A) is the eigenvalue of
M(»). The variablesy;, logA; are canonocally conjugated which can be shown following
[5] using (2):

{vi.10gA;} =36 ;.
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From detM (1) = 1 it follows that A(y;) = AJ.‘l. One can reconstruct the matri (1)
from y1, ..., yu_1, A1, ..., Ay_1, a; andb. The symplectic form is written as

“):S dlog Aj A dy; +dlog b A daj.
j=1
The 1-forma (w =jda) is
a= flogA, dy; + logb da;.
i=1
Let us take oiher coordinates on the phase space, namgly,., vu_1, t2,...,
(defined byT (A) = A" + A" "Lty + A" %t + - - -+ 1,), 11 = a1 andb. From

Aj =A@y = 5T (y,») + m)

one easily finds the expression for the symplectic form in these variables

‘“_ZZWO‘”‘ A dy; +dlog b A dag

j=1 k=
where P(1) = T2(A) — 4. Thus the equations of motion take the form

(T, %) =VPW) ﬂ

ket Vi T Yk (4)

{(T(V), by = 2" b,

Only the firstn — 1 equations are really interesting. They are linearized by the Abel
transformation:

n—1 1<
{T(A), Z/y Uj} — /1
k=1

whereo; are first kind Abelian differentials on the spectral cupve= P()):

AL
o = dA.
VP
We associate the ‘times’y, ..., 1,1 With 1o, ..., #,:
d
—F=0F ={t;11, F}.
E)‘Ej j {]Jrl }

The evolution ofy_j_; /™ o; with respect to times is linear.

The above considerations apply to any orbit of the Lie—Poisson group. We want now
to consider specific reality conditions which correspond to the Toda chain. It can be shown
[8, 9] that the conditions in question are:

(i) The polynomialT (1) of degreen hasn real zeros. Moreover its local maxima are
not below 2 and its local minima are not abov®. So, all the zeros of the polynomial
P(}) are also real, they are denoted by < A, < - -+ < Ag,.

(i) The polynomial B(A) has real zerog., ..., y,—1 Which belong to the ‘forbidden
zones’: Ay, < Vi < A2kt1-

The equations of motion (4) preserve these conditions. The hyperelliptic Riemann
surfaceu? = P(1) has 2 branch points¥;). Its genus equals— 1. We present the surface
as two complex planes with the cuts alofgoo, A1), [A2, A3, ..., [A2:, 00) identifying the
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banks of the cuts on two sheets in usual way. The canomecgtlesq; are taken as ones
encircling the cutsA,;, A2j41] for j = 1,...,n — 1. Topologically the points; move
along the cycles;.

Define the normalized holomorphic differentials

wj = Ajkak

l/ _
21 ajwk_ ke

such that

Then

are real angles of the Jacobi variety, and the dynamics describes a linear motion along this
real torus. One can invert the Abel transformation expressing the symmetric functions of
y1, ..., ¥a1 (recall that they coincide withq, ..., b,_1) as functions of the Jacobi variety
(functions of6’s) using the Riemand-function but we shall not need the explicit formulae.

The angle® and the timeg are related linearly:

n—1
0, = E Ajta
=1

so, using th&-function formulae mentioned above one can resolve the equations of motion
expressing; asb; = bj(ta, ..., Ta-1).

From the point of view of algebraic geometry the monodromy maMx.) gives
an affine model of hyperelliptic Jacobian, and the functién&) are the generalized
Weierstrass functions [10]. In the case of genus ane @) the functiony (1) = b1(t1) is
the usual Weierstrass function which satisfies the second-order differential equation

1d
Ry =55, P 0 (5)

One of the results of our further analysis will be in finding certain second-order partial
differential equations for generalized Weierstrass functions which can be thought of as
generalizations of (5).

Let us consider the ring of generalized Weierstrass functions with coefficients in
t1,...,t,—1, i.e. the ring of polynomials

F(ty, ... t,,b1,...,b,_1).
Consider further all possible derivatives of these polynomials with respegt to
N IF(t, . by, b1, bya). (6)

The equations we are looking for correspond to all possible linear combinations of the
functions (6) which vanish due to equations of motion. To understand the origin of these
equations we have to return to our mechanical considerations.

Mechanically one understands the derivatidgesas Hamiltonian vector fields. Using
the Poisson brackets (2) one can express (6) as a functien,of.,a,, b1,...,b,_1,
Coy ..., Coi1, do, ..., dy, 1.€. @S an element of the algehda. We put forward the following.

Conjecture 1.Every element of A4y can be presented as a linear combination of the
expressions (6).
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We were not able to find a complete proof of this statement; however, the consideration
of examples supports it. Further indirect support of this conjecture will be provided by the
calculation of characters given below.

Assuming that the conjecture is true one realizes that the way of presenting an element
of Ap as a linear combination of the expressions (6) may be not unique. Indeed, let us
calculate the character of the space span by (6). We prescribe the ddgréewhich is
consistent with the Poisson brackets (2). Obviously, the character is

1
[n — 1) [n]'[n — 1]!
wherey (¢) is the character (3). So, there must be a linear dependence between the functions
(6) which is responsible for differential equations on the generalized Weierstrass functions.
Moreover, there is a criterion which allows one to judge whether the set of equations is
complete. Indeed, to show the completeness of the equations one has, obviously, to prove
that taking them into account leads to the correct character (3).

Let us find the equations in question. To this end we shall use the Fourier transform.
Consider a functionF (¢4, ...t,, b1, ..., by,—1). The variables; are the integrals of motion
(and the moduli of the Riemann surface) and the varialylese the functions on the Jacobi
variety due to the equations of motion. Hence

F(ty, .. ty, ba(T), ... bya(T) Y @0
k kn-1

1
2 2

X dej,- e derll—lF(tlv ceesIn bl(e/), ey bn_l(e’))eizk,ﬁ]'
0 0

whered; = ), Aj;t,—;. Let us undo the Abel transformation inside the integrals:
F(t1, ..., 1y, b1(7), ..., bp_1(7))

> x(q)

1 _isk6, dy1 dys
[ 'wf/ / L C, § (R,
“I"dera) ,qz w NP o VPO ,.E(V n)

cnkn1

Xﬁ(tly ~-~atna Y1, -« - ytl—l)l_[eiCI)k(yf) (7)
J

whereF (t, y) = F(t, b(y)) (recall thatb; are elementary symmetric functions o). For
anyk = {ky, ..., k,_1} we define

14
q’k()/)=/ kjw;.

Deriving (7) we needed to take into account the Jacobian of the Abel transformation. Later
we shall relate the integrals in (7) to the quasiclassical limit of the matrix elements in the
guantum Toda chain. The equations of motion correspond to vanishing of all the integrals
in (7). Let us explain the possible reasons for these integrals to vanish.

Consider first the term in (7) with = 0 which is nothing but the average &f over
the Jacobi variety (the trajectory):

1 dyy dy1 =
(F) = / | |i —V)F @ y). 8)
deKA) a; V P(Vl) a_1 V P(J/n—l) 11:! !
There are two reasons for this integral to vanish. The first one is obvious, it is due to
existance of exact forms. With an arbitrary polynomidly) associate the polynomial

dL(y)  1dP(y)

Di(L)(y) = P(y) dy t5 dy

L(y).
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We marked explicitly the dependence on the moduli (integrals of motiea), ..., t,}
which enters througtP (y).
There is an obvious proposition.

Proposition 1.The foIIowing integral vanishes

/ Wmmm ©)

for any polynomialL and any closed cycle.

Hence the integal (8) vanishes if

n—1
Ft.y)= Z RRLRL DI 7R 7R
H/#l( Vi~ Vi
for any polynomialL and any symmetric polynomial of — 2 variablesG (both of them
can be also polynomials of parameteys This property means in particular that by adding
exact forms one can reduce the degree of the polynomikl everyy; up ton.
The second reason for the integral (8) to vanish is due to the Riemann bilinear identity.
Consider the antisymmetric polynomial of two variables

Ci(y1, ¥2) = Ri(y1, ¥2) — Ri(y2, 1) (10)
where

d
R (y1, v2) =V P(y1)— (
Y1

1
3 v P()/l)) .
" )

For any two cycles on the Riemann surface one has

1
- C,(n, e
/Cl /c; \/W m (Y1, ¥2) =c10c2

whereo means the intersection number. Since the cyejedo not intersect one has the
following proposition.

Proposition 2.For any twoa-cyclesa; anda, the following integral vanishes:

1
= Cmy) =0
/u,. . VPO VPG 2

Hence the integral (8) vanishes if

~ 1
F(t,y) = Ciyis V)G oo s Vi e s Voo Vi)
; O =) i, i = =)0 !

Let us consider now the case of arbitrary= {k4, ..., k,_1}. Introduce the polynomials
S[’k:

S,
|Zk w;(y) = k((”))

Integrating by parts one gets the following three simple propositions.

Proposition 1. For any polynomial define the polynomial

Y
Da(L)() = Di(L)(y) = Six () fo LGS () dy!
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then the following integral vanishes for aaycycle:

/ \/;'V(_é“’“WD «(L)(y) =0.

Proposition 2. Define the polynomial

Y1 S’ ( )_S’ ( )
Cix(yr, y2) = Ci(y1, v2) — Sk()/l)/ % dy

2 g St
+Sk()/)/ tk(y: J/1k()/1) y

then for any twoz-cyclesa; anday the following integral vanishes:
dys

eiq’k(l/z)ei‘l)k(yl)c , —0.
o VPOD Jo VP k(1 ¥2)

There is one more identity which is trivial in the case= 0.
Proposition 3. For anya-cycle the following integral vanishes:

éq)k()/z)s ()/)

[ 7%

From these three propositions one finds the following partial differential equations on
the symmetric functions of:

(1) For any polynomial one variable and any symmetric polynomial af— 2 variables
G the equation holds:

n—1 _
—Dt(L)(Vl)G(Vls '-~-,)/n 1) 818111
i:Zl Hj;ﬁi(yi =) l%l
n—1 1
X[Z —yi"*lf’f Loy ™" dy G P Yae n]
iV =7) 0
=0. (11)
(2) For any symmetric polynomial of — 3 variablesG the equation holds:
1
C(G) = Cis V)G Vi Vi s Va1)
,; G =) i i = =) 70 !
n—1
1
— 070,
,;1 : [; Vi =) e ;i = v (i — )
XG()/l,...f/?...]’/;...,]/nfl)
e Vi y”’lf’" — yf’_l_m . Vi yn—l—m _ yA"*l*m
(V,- ll/ J d)/ )/ ll[ i dy)i|
0 Y=V 0 Y =Y
=0. (12)
(3) For any symmetric polynomial of — 2 variablesG the equation holds:
Q(G) = Za,[z T T G T 1)]=0. (13)
[T (Vz ¥)
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One must add to the equations (11)—(13) their trivial consequences: i.e. the equations
obtained from them by applying an arbitrary numberopf We claim that in this way all
the equations of motion can be described.

Let us illustrate this point considering the simple example 2. In that case genus is
equal to 1 and we have only one variable The equations (12) and (13) are trivial, so we
are left with (11). Let us také.(y) = y?, p =0, 1,.... Then (11) turns into

1 d 1
r=ip “yP—P(y) =97 P 14
py ()/)+2V 4 62 31<p+1y ) (14)

and we have only one time, in that case. As has been said earlier the functiois

the Weierstras®-function. The equation (14) coincides with the usual equation (5) when
p = 0. For otherp we get the equations on degreesjyofvhich can be verified for the
Weierstrass function. Recall that we were considering the space of functions of the kind

W F (11,12, 7). (15)
Let us calculate the character of this space modulo the equations (14) and their trivial
consequences (those obtained by applicatiof; pf Obviously, using (14) we can express
any function of the kind (15) as a linear combination of

Fo(ty, t2) Fi(t1, 1)y Fa(t1, 12) 3" y2.
So, the character is

2

1 4q 9 2
al (” mt [11) [21'( +4)

which coincides with (3).

Let us consider the general case. We have the space of symmetric functions of
Y1, ..., Ya_1 With coefficients inz, ..., t, on which the derivatives,, ..., d,_1 act. We
can also consider the derivatives as coefficients, identifying this spaceHyith which
is the space of symmetric polynomials #f, ..., y,_1 with coefficients inz, ..., and
d1, ..., 9,1 (recall thato; and#; commute). Substracting the exact forms (11) we finish
with the spaceH 1 which is the subspace @1, defined by the condition that the degree
of the polynomials in every; does not exceed. We define the spacdsl (j<n—=1)of
symmetric polynomials ofi variablesy; whose degree in every variable does not exceed
2n — j — 1 with coefficients inr, ..., 1, andd,, ..., d,_1. The action of the operatois
and Q defined by (12) and (13) can be obviously extended to the action fiprg to H, 1
and fromH,_, to H,_, respectively. It is also clear that the images of respectivelys
and H,_, belong toH,_1. One can easily generalize the definitionsCoind Q allowing
them to act respectively from{] 2> to H; and from H, 1 to H For these operators one
has

[C,Q] =0 Q*=0 Kerlg ,.5(C)=0. (16)
Now noticing that de@) = 2 and degQ) = 1 one evaluates the character:

el (o] o B )
(]
2] 7))
-y (221 (23)
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which coincides with the character (3). There is an obvious similarity between what we
have done and paper [2].

3. Quantum Toda chain

Following Sklyanin [5] we shall use the same notations for the quantum analogues of
classical objects that have been used in the classical case. The Hamiltonian of the quantum
periodical Toda chain is given by (1) with;, ¢; being the canonical operators
[pi. q;] =ihs;;.
Consider the same definition @f-operator and monodromy matrix as in classics. The
monodromy matrix satisfies the relations

R —)(MR) @ M()) = (M) @ (M) & IR(A — 1) 17)
with R(1) being the quantunR-matrix:
R(L) = A —ihP.
The trace of the monodromy matrix provide£ommutative integrals of motion.The center
of the algebra is created by the quantum determinant
AMNDM +ih) — BWC +ih) = 1. (18)
The idea of using the separated variables in quantum case goes back to [11]. It was

developed as a universal method by Sklyanin. Let us briefly review the method of separation
of variables following [5]. From the relations (17) one finds, in particular, that

[B(A), B(w)] = 0.
So, presenting the operatdi() in the form
n—1

By =b][r—»)

j=1
one gets a family of commuting operators:
[b,y]1=0 [vi, vl = 0.

As in the classical case the operatbi@nda; = P commute with everything except between
themselves:

[a1, b] = ihb.

The idea of the method of separation of variables is in considering the modelin
representation. The canonically conjugated operatdr &xists already: this ig;. The
canonically conjugated operators fgr are constructed as follows. Consider the operators

A ="+ A" ta 4+ +a,
D) = M""2dy+ - +d,.
Then it can be shown that the operators
[\' =y +y'n_1al+"'+an
o (19)
A=y “dat+---+dy
satisfy
IN\]‘AJ‘ = 1 [Aj, )/g] = IE(S]](A/ (20)
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The order of multipliers in (19) is important.
It is possible to reconstruct the operatar6), B(A), C(1), D(1) usingazy, b, y;, A;. In
particular,

n—1 n—1
T(A):Z]‘[(’\ y/>(Ak+Ak_1)+H(k—yj)<k+a1+Zyj). (21)
=1 j#k \Yk T Yj j#1
The Hilbert space splits into a direct sum of orthogonal subsp&tesorresponding to
different eigenvaluep of the zero-mode;. Let us consider the spadd, the solution in
other subspaceH,, are obtained from the one fdiy by simple transformation. Iy the
eigenfunctions off' (A) with the eigenvalue()) in y-representation can be looked for in
the form

n—1
(tyy=[]ow.
j=1

Applying (21) one finds with the following equation f@(y):

t(y)Q(y) = Q(y +ih) + Q(y — ih) (22)

wheret (1) is the eigenvalue of (1) on [¢). In the subspacél, this eigenvalue must be a
polynomial of the kind

t(A) = A" + O(A"72).

Equation (22) is an equation with two unknownsand Q, so at first glance it is rather
useless. However, assuming certain analytical propertie® @f) this single equation
actually defines the spectrum. Namely, require that the funeligpm) is an entire function
of v with infinitely many real zeros. Moreover, impose the following asymptotic:

1) ~ Mllo A T 1~
00 °°S<f g(;>+z> o

Tn An A T (23)
QL) ~ er* cos - log <—;> + —) A~ —00.

4

The normalization ofD is not the same as in [5]. Far= 4k the functionQ differs from the
function¢ from [5] by the multiplier exrr An/2k) which is in this case a quasiconstant i.e.

it does not disturb equations (22). df+# 4k the formulae of [5] require certain corrections
which are provided by equations (23). Our normalization basically coincides with the one
accepted in [12]. According to [12] it provides the only way to have correct quasiclassical
limit. We discuss this limit in the next section.

The main conjecture of the paper [5] is that the spectrum of the model is defined by all
the solutions to equations (22) with the analytical properties ahd QO described above
and the asymptotic behaviour @f given by (23). This conjecture was proven by Gaudin
and Pasquier [12].

Now we want to discuss the properties of the matrix elements of the operators. To
consider the matrix elements we need to know the scalar product in the space of functions
of y;. This scalar product was found by Sklyanin [5]. We repeat the essential steps because
again there will be a minor differencerif+# 4k. Consider an operatd? which is given by
a symmetric functionF (y1, ..., ¥.—1). The wavefunctions are real, so the matrix element
is given by

o) oo n—1
(rlolr’) =/ dV1~-~/ dya 1 [ [ QONQNF (.. Yo D)W, - Ya1)
—0o0 —00 j:l
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wherew is a certain weight. Requiring that the operalti.) for real A is self-adjoint and
using the formula (21) one concludes that

W) = [ [0 = v 0. vac)
i<j

where w(y, ..., ¥,—1) is the h-periodic entire function of its arguments. There are two
formal reasons for choosing particulér First, everything under the integral is symmetric
with respect toyy, ..., y,_1 except for the muItipIied'[l.<j(y,- —yj) in w, so it does not
make sense to put i anything that can be killed by antisymmetrization. Secondly,
requiring convergence of the integrals one finds from the asymptotic (23)dthe&n
contain exg—2ry;m/h) with 1 < m < n—1 . These two requirements fi% up to
antisymmetrization:

n—1
By yae) = [ | €700, (24)
j=1
Again, if n = 4k this essentially coincides with [5]; otherwise there is a minor discrepancy.

An informal reason for takingp in the form of (24) refers to the quasiclassics, and is
discussed in the next section.

Similarly to the classical case the algebra of observaldlgss defined as the algebra
generated by all the coefficients df(), B(x) = b~1B(x), C(x) = bC(2), D(A). The
commutation relations (17) and the quantum determinant (18) provide sufficiently many
relations to show that the quantum algebra of observables has the same size as the classical
one. To make this statement mathematically rigorous one says that their characters coincide.

Now we formulate an analogue of the conjecture 1 of the previous section.

Conjecture 2.Every quantum observabl®@ can be presented in the form
O = GL(tla AR ] tn)F(bla AR ] bn—l)GR(tl’ MR tn)
whereG, F, Gy are polynomials.

This conjecture looks more natural than its classical counterpart and explains the mystery
of the latter. The point is that there is no closed formula for the commutation relations of
T (») and B(n) which would allow ordering of the operatorsandb;.

Taking the matrix element between two eigenstates of the Hamiltonians one can
essentially neglect the polynomiats; and Gr because acting on the eigenstates they
produce the eigenvalues. Hence we are mostly interested in the matrix elements of the
operatorsdy = F(by, ..., b,_1) which are given by the integrals of the kind

[e'S) 00 n—1
{t|Oolt") =/ dyl-.-/ dyaa [ [ QO ()
—0 —0o0 j:]-

n—1 n—1
[T = [1Fon v [J €770 (25)
i<j j=1 j=1
where

Fri, ooy Vae1) = F01(0)s -+ o buca(0)). (26)
The function

n—1
[Toi—w]]Fon-
j=1

i<j
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is an antisymmetric polynomial ofy, ..., y,_1. Every antisymmetric polynomial can be
presented as a linear combination of Schur functions, so, without loss of generality we can
replace (26) by

det(F;(y;))
for some polynomials of one variablgy, ..., F,_;. Then the matrix element can be
presented as a determinant of @n— 1) x (n — 1)-matrix composed of one-fold integrals:

det( f Q(V)Q/(J/)E(V)e%(j‘”)> dy. (27)
We consider the integral

f 0W)Q (V) F(y)e 7 dy (28)

as a deformation of hyperelliptic integral. The study of the properties of these integrals is
very important for understanding the matrix elements of operators in the model.

Since the quantum algebra of observables has the same character as the classical one the
equations (11)—(13) must have their quantum counterparts. Hence there must be identities
for the integrals (28) from which these quantum counterparts follow. These identities can
indeed be found, and we shall describe them in the same order as in the classical case.

Let us introduce the operatioft which attaches to every functiofi(y) the function

A(F)(y) = F(y +1ih) — F(y —ih).
The operatiorA~! is not always defined, but on polynomials it is. For any polynonial
one can define a polynomid such thatF(y) = A~X(L)(y). For uniqueness we require
also thatA—1(L)(0) = 0. Consider the integral (28) wit®(y), Q’(y) satisfying equations
(22) with the eigenvalues(y) and+'(y). For any given polynomial (1) construct the
polynomial
(L) () = 1(HAHLOY) + 1 (AL () = 1AL (y —ih)

—t'(VATHLO(y —ih) — L)t ()t () + Ly +1h) — Ly —ik).  (29)
Then we have the following analogue of the propositions 1 @nd 1

Proposition 1. For any 1< k < n — 1 the following integral vanishes:

/ Q) Q' (V)D(L)s ()€ T dy =0, (30)

Using theseg-exact forms (29) we can always reduce the degree of the polynomial
F(y) under the integral (28) in order that it does not exceed-2. So, we are left with
a finite number of different integrals (28) with(y) = ¥/, j = 0,1,...,2n — 2. These
integrals are subject to further relations.

In order to define a quantum analogue of the polynomj&}., v2) (10), we need some
preparation. Consider the function
1(y) —1(5)

y=38
The notationA=(U (-, §))(y) means thatA ! is applied to the first argument, i.e.

AU =U(y, d).
The functionU’ is defined in the same way replacindpy ¢’

Uly.d) =
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Consider the antisymmetric polynomial of two variables
Civ(y1, v2) = Riv(y1, v2) — Rev (v, 1)
whereR; . (y1, y2) is defined as follows:

R (1, v2) = t(r) AU, 12) (1) + £ () AU, v2) (1)
—t(yDATYU' ¢, y2) (1 — i) — £ (y) AU, y2)) (1 — 1)

1
-3 (t(yr) — t () (1" (y1) — 1/ (12)).
Yi— V2

We also have the following.

Proposition 2. For any 1< k,! < n — 1 the following integral vanishes:

/ / Q1) Q' (1) Q(y2) Q' (¥2)Cr.p (y1. y2)€ 7 ke 772! dy, dyp = 0. (31)

Finally, let us define

Seo(y) =t(y) —t'(y).
Then we have the following.

Proposition 3. For any 1< k < n — 1 the following integral vanishes:

/ 00 (1)S(y)e 7 dy = 0. (32)

This is in fact the simplest relation, we consider it last for historical reasons. One
obvious consequence of this relation; is orthogonality of the wavefunction.

Let us say a few words about the proof of all these relations. Consider the simplest one
(32). We have

OO WS r(¥) =0 Q' ()(t(y) —t'(¥)) = Q(y +iQ'(y) + Q(y —ih)Q'(y)
—-0()0'(y +ih) — Q(y)Q'(y —ih).
So,

f 0(Q )S(y)e T dy = / Oy +iMQ (y)e 7" dy
+/ Oy —hQ'(y)e T dy —/ 0 Q'(y + ke Trhdy

—/ 0()Q'(y — ke T  dy.

By shift of contour the first integral cancels the fourth one and the second integral cancels
the third one. The shift of contour is possible because the fun@ibehaves asymptotically
on the line In{y) =constant, essentially in the same way as it behaves at the real axis. The
relations (30) and (31) are proven similarly, but that requires more sophisticated calculations.
Using equations (30)-(32) we can write down equations similar to (11)—(13) which
would guarantee that the number of operators (character of the algebra of observables) is
correct. The corresponding calculation does not differ from the one presented earlier for
the classical case.



Structure of matrix elements in the quantum Toda chain 8967
4. Quasiclassical case

We had a number of identities described by propositions’ ;11”1 2, 2, 2’; 3, 3’. They
appear to be reflections of the same structure. The goal of this section is to explain the
relation between the different levels of deformation.

Consider the quasiclassical quantization of the Toda chain. We had the following
formulae for the symplectic form and corresponding 1-form in the coordinad@sl y :

n—1
o= Z log A(y;) dy;
= (33)

w= da—ZZWdtk A dy;.

Jj=1 k=2

In this section we shall ignore the contribution from the centre of mass variablesd b
which is easy to find if needed. Using these formulae one immediately writes a quasiclassical
proposal for the wavefunction of the states with eigenvatuiesy—representation:

1 (Y%
Wi(y) = Wexp( f ) H(y,—m]"[(P(y) <Ef IogA(y)dy)
J

(34)

whereu is defined as follows
A Yy =pdyr AL A dy,ir A d AL A dy.
The relation of the formula (34) to the exact quantum formulae that we had before is
clear.
(1) The muItipIier]_[i<j(yi — yj)% is a piece of the weight of integratian (25). Another
one will come from the second wavefunction in the matrix elements. The wavefunction
without this multiplier will be denoted by, ().

(2) The function®, (y) splits into a product of the expressions

(5 )iex (& [ orcnoy)
PO p 7 gA(y)Qy

which has to be related to the quasiclassical limit of the functizn One should be
careful here because the function lbgy) is multivalued, so, the branches must be defined.
Moreover, we would probably need linear combination of the wavefunctions corresponding
to different branches.

Recall that

A =3 (T +VT20) —4)

where T (1) is a polynomial of degre@. The polynomialP(y) = T?(y) — 4 has 2
real simple roots\; < --- < Ay,. We define the functiom (y) on the plane with the
cuts along the intervalsly = (—o0, A1), I1 = [A2, A3], ..., I, = [A2,, 00). Requiring that
log A(y £i0) are real fory > A, then, obviously,
log A(y +1i0) +logA(y —i0) =0 y € l,.

Continuing analytically log\(y) into the plane with the cuts one finds that
log A(y) = logA(y) and logA(y +i0) + log A(y —i0)

= 27i(n — j) v € l;.
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The variabley; belongs classically td;. So, we need the wavefunction real on the
entire real axis and not containing the factors (ex%m) with s real when all the variables
are in the classically permited places. This requires, first, taking different brances /f log
for different y; and, second, taking a sum of two wavefunctions with-i0 andy; — i0
for everyy;. The result is

\i/t(l/) = l_[ er U= Oqc(¥))
where

. _ 1 \# 1 [
Qqc(y) = V(y +10) + V(y —i0) Viy) = <_m> eXp(ﬁf log A(y)dy).

The branch of log\ is defined above(—%y))% is real positive foriyj_1 < y < Ag;.

To ensure thalq(y) is a single-valued function in the plane with the cuts the Bohr—
Sommerfeld quantization condition must hold

Ji = / log A(y)dy = wh(2n; +1). (35)

The integrals/; are the classical actions. The cuts@jc come from condensation of zeros
of the quantumQ in the quasiclassical limit.

Let us consider now the quasiclassical lithit> 0 of the matrix elements. This limit
makes sense literally if two condition are satisfied:

(1) The quantum numbers are large. In our case it means that the 20nes[.] do
not collapse.

(2) The statesr) and|t’) are close, i.e. the eigenvalues of the Hamiltonians are close:
tjf —t; = O(h).

Consider the matrix element (25) for such close states. It consists of the integrals

oo
2t s
| _omomrmeriray.
—00
From the quasiclassical estimation @f Q' one concludes that

/ 0()Q' () Fi(y)eT U7 dy

0 1 17 ;o , T
— 4/1,- WCO‘c'(ﬁ/ Re(log A(y’ +i0)) dy’ + Z)

1 Y
X cos(ﬁ/ Re(log A'(y’' +i0)) dy’ + %)Fi(y)dy.

We have

1 7 . T 17 ) T
ZCOS(ﬁ/ Re(log A(y’ +i0)) dy’ + Z) cos(}—_l/ Re(logA'(y’ +i0)) dy’ + Z)

= cos(hi /y Re(log A'(y’ +i0) — log A(y’ +1i0)) dV’)

Y
—sin (%/ Re(log A'(y’ +i0) + log A(y’ +i0)) dy’).

The second term in the r.h.s. can be thrown away because it is rapidly oscillating in the
classical limit. The variation log (y) — log A’(y) is estimated as follows. Consider the
classical solution witlg (L) = (1) wheret (1) is one of the eigenvalues. This is the place
where using the same notations for classical and quantum observables can be misleading,
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so we explicitly mark the classical ones. The eigenvalge) = T¢ (1) + 8T (1). One has

(in further calculations we neglect contributions of ord€r)y:

5T (v)

v P(y)

How to find §T(y)? The quasiclassical states are subject to the Bohr—Sommerfeld

quantization conditions (35). The quantum numbeysare quasiclassically largen; =
O 1), but their differences for the close states are fiRjte= nj’ —n; = 0O(1). Hence

s 1o [T vyt
gApdy = | s dy = Y Sturia Tre ¥ = (36)
aj aj =1 aj

"

SlogA(y) =logA’'(y) —logA(y) =

The matrix

1 ylfl
AT = f dy
Yy NP
is the inverse for the matrix used in the definition of the normalized Abelian differentials
w;. Hence

Sty_i41 =hkjAj
which means that
SlogA(y)dy =R kjo;.
Thus the quasiclassical matrix element for the close states is

’ d)/]_ / dyl
1|0ty = —_— — v
v /, VB ) VP E(y g

VF(y1. - va-1) | [ 2o (yp)).
Jj

(37)

Recall the notationd;(y) = [” kjw;. This is the same expression as for the Fourier
coefficient in (7). At first glance there are two disagreements: in (7) we integratezgver
and we have expd(y;)) under the integral. Actually, these two disagreements compensate
each other becausg = (I; +1i0) — (I; —i0) and @, (y +i0) + &« (y —i0) = 0 wheny € I;.
Notice that the statejg) are not normalized.

It is not a surprise that we have found the Fourier coefficient as the quasiclassical limit
of the matrix element. We have performed all the calculations in order to have the complete
mathematical picture. On the other hand from the point of view of physics one can argue
as follows.

Consider the action-angle variablds, ..., J,_1, 61,...,6;. The Bohr-Sommerfeld
guantization in this variables does not give the correct quantum result, but is still correct
guasiclassically. Consider the eigenstate of Hamiltonijghsand the eigenstates of the
angles|@). Quasiclassically one has for the wavefunction:

(t6) = \/% exp(% > Jkek). (38)

Consider an operata®. This operator can be, at least quasiclassically, ordered in such a
way thatJ’s are to the left ob’s. Then the classical shape of the corresponding observable
on the solution with given values of integral9 (s

. {t|0|6
Oc(01, ...,60,1) = hllino < <|t|9|> >.
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Insert the complete set of eigenstates into this formula

- (11010) (t1O]t) (1'0)
Ou(by,...,60,-1) =lim —— = -— 39
(%1 D=0 ) Z Iy (116) (39)
Quasiclassically only close states are important, for which we have from (38):
_([,|9) — eﬁizk/ei.
(t10)
Now it is obvious that (39) gives the Fourier transformatior@gf(4s, . .., 6,-1). Itis clear

from equation (37) that quasiclassically
(t'lt") = (t]t) + Oh) (t|t) = det(A).

So there is complete agreement with formula (7).

Let us consider two close states introducing the notat§niy) = ¢'(y) —t(y). The
guantum matrix element goes to the classical Fourier coefficient wher0. If we consider
the classical Fourier coefficient with= 0 it describes the classical limit of the quantum
expectation valuér|O|t). So, it is no surprise that we have the following sequences:

h—0 k=0
Dy v (L)(y)—> Dy 1 (L)(y)—> D (L)(y)
h—0 k=0
Cr.r(V1, v2)—>Cr i (Y1, v2) — C: (V1. v2) (40)
h—0 k=0
St (¥)— Sk (y)—0.

Thus, there are two levels of deformation of the hyperelliptic differentials. The impression
is that the quantum deformation is very natural, and that the classical mechanics appears as
a strange intermediate case.

5. Conclusions

The identities (30)—(32) present the main result of this paper. They show that the matrix
elements of the arbitrary operator in the quantum Toda chain can be expressed with the help
of finitely many integrals which possess remarkable properties.

There is a difference between what we have and the sine-Gordon theory in infinite
volume. Indeed, the matrix elements for the Toda chain are given by integrals of arbitrary
deformed differentials with respect to a fixed half-basis of deformed cycles. In the sine-
Gordon case we took an arbitrary half-basis. The reason for that is the difference in the
type of reality conditions.

In this connection it is very important to consider the deformation of the Toda chain with
a trigonometricR-matrix and more complicated reality conditions, which is much closer
to the sine-Gordon case. We hope that in this situation there would be a complete duality
between deformed differentials and deformed cycles.
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