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Structure of matrix elements in the quantum Toda chain
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16 1erétage, 4 place Jussieu, 75252 Paris Cedex 05, France

Received 26 May 1998

Abstract. We consider the quantum Toda chain using the method of separation of variables.
We show that the matrix elements of operators in the model are written in terms of a finite
number of ‘deformed Abelian integrals’. The properties of these integrals are discussed. We
explain that these properties are necessary in order to provide the correct number of independent
operators. A comparison with the classical theory is made.

1. Introduction

As became clear recently [1–3] there is a close connection between the formula for the matrix
elements in the integrable field theory (form factors) [4] and the method of separation of
variables developed by Sklyanin [5].

The form factors are typically given by certain integrals. This kind of formula can
be interpreted as follows. Consider an integrable model which allows the separation of
variables. The separated variables naturally split into two equal parts: one of them can be
considered as ‘coordinates’ and another as ‘momenta’ (of course they have nothing to do
with the original canonical variables in which the model is formulated). The formulae for
the form factors are understood as matrix elements written in ‘coordinate’ representation,
i.e. in terms of integrals with respect to the ‘coordinates’.

Another observation made in [6], and used intensively in [1, 2] is that the integrals in
the formulae for the form factors in models witĥsl(2) Lie–Poisson symmetry (sine-Gordon,
for example) can be considered as deformations of hyperelliptic integrals. This fact must
also be related to the method of separation of variables because the ‘coordinates’ describe
classically a divisor on the spectral hyperelliptic curve. The important conclusion made in
[2] is that these deformed hyperelliptic integrals must have similar properties to the usual
hyperelliptic integral in order that the correct number of equations of motion exists in the
quantum case.

In paper [3] we performed the quasiclassical analysis of the matrix elements in the
conformal field theory (CFT) in finite volume. This is a much more complicated case than
the case of infinite volume. The method of separation of variables seems to give the only
possible approach to the calculation of form factors. The main difficulty of the problem in
finite volume is due to the fact that the separation of variables leads to the Baxter equations
whose solutions describe the wavefunctions in the ‘coordinate’ representation. So, one must
consider integrals over solutions of Baxter equations.

† Member of CNRS. On leave from Steklov Mathematical Institute, Fontanka 27, St. Petersburg, 191011, Russia.
‡ Associated to CNRS.
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In this paper we consider a much simpler model which nevertheless exhibits difficulties
similar to those of integrable field theory in finite volume. This is the periodical Toda
chain. Historically this is the first model to which the method of separation of variables
was applied [5]. In this case the problem of describing the spectrum leads to Baxter
equations with nontrivial solutions in entire functions. The matrix elements are given by
integrals over these solutions. We show that these integrals can be considered as deformed
hyperelliptic integrals allowing a deformation of all the important properties of hyperelliptic
integrals. Similarly to [2] these properties are needed for the correct counting of operators:
they are actually equivalent to the equations of motion.

2. Classical Toda chain

The periodical Toda chain is described by the Hamiltonian:

H =
n∑
j=1

p2
j

2
+ eqj+1−qj (1)

wherepj , qj are canonical variables,qn+1 ≡ q1.
The exact solution is due to existence of a Lax representation. Consider theL-operator

Lj(λ) =
(
λ− pj , eqj

−e−qj , 0

)
and the monodromy matrix

M(λ) = Ln(λ) . . . L1(λ) =
(
A(λ) B(λ)

C(λ) D(λ)

)
.

Obviously, detM(λ) = 1. The monodromy matrix satisfies Sklyanin’s Poisson brackets:

{M(λ)⊗,M(µ)} = [r(λ− µ),M(λ)⊗M(µ)] (2)

where

r(λ) = −P
λ
.

P is the permutation. The coefficients ofT (λ) ≡ trM(λ) are in involution:

{T (λ), T (µ)} = 0.

Moreover,

T (λ) = λn − Pλn−1+ ( 1
2P

2−H)λn−2+ · · ·
whereP =∑pj is the total momentum andH is the Hamiltonian (1). ThusT (λ) generates
n integrals of motion in involution providing complete integrability of the system.

From here on we can forget about the Toda chain saying that we consider an orbit of Lie–
Poisson group [7] i.e. the polynomial matrixM(λ) with detM(λ) = 1 satisfying the Poisson
brackets (2) (determinant is in the centre of these Poisson brackets) and characterized by
certain reality conditions which we shall discuss later.

Let us consider the elements ofM(λ) in some more details. We introduce the notations

A(λ) = λn + λn−1a1+ · · · + an
B(λ) = b(λn−1+ λn−2b1+ · · · + bn−1)

C(λ) = λn−1c2+ · · · + cn+1

D(λ) = λn−2d2+ · · · + dn.
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The variablesb anda1 have the Poisson brackets

{a1, b} = b
and Poisson-commute with the rest of the variables. In terms of the Toda chaina1 = P and
b = eqn describe the motion of the centre of mass. Our nearest concern is the algebra of
observablesA. We define this algebra as the one generated by all the monomials of finite
degree of the variablesaj , bj , cj , dj andb. It is important that the polynomial structure of
M(λ) introduces grading ofA. Namely, we can prescribe the degreei to the variablesai ,
bi , ci , di and the degree 0 tob. The degrees of the leading coefficients ofC(λ) andD(λ)
are chosen in order that the coefficients of the determinant

detM(λ) = λ2n−2f2+ · · · + f2n

are homogeneous. The variableb is a kind of a zero-mode, it is of minor dynamical value.
The algebraA contains a subalgebraA0 of polynomial functions ofai, bi, di and c̃i = bci .
So, this subalgebra does not haveb as a separate generator, the change in the definition of
ci is needed in order that the Poisson brackets are closed forA(λ), D(λ), B̃(λ) =∏(λ−γj )
and C̃(λ) = bC(λ). We shall deal only with this subalgebra.

The algebraA0 as a vector space splits into a direct sum of subspaces of different
degrees. Let us denote byδ(n) the dimension of the subspace of the degreen. The
generating function ofδ(n) (character) is given by

χ(q) ≡
∞∑
n=0

δ(n)qn = 1

[n]!

1

[n− 1]!

[1]

[n+ 1]!

[1]

[n]!

[2n]!

[1]

where [n] = 1−qn, [n]! = [1][2] . . . [n]. The first four multipliers come from monomials of
aj , bj , c̃j , dj respectively, the last multiplier comes from the factorization by the condition
detM(λ) = 1.

Notice that

χ(q) = 1

[n]![ n− 1]!

([
2n− 1
n− 1

]
− q

[
2n− 1
n− 2

])
(3)

where we introduced theq-binomial coefficients[
n

m

]
= [n]!

[m]![ n−m]!
.

Later we shall provide an interesting interpretation of this formula.
Let us return to a more traditional consideration of the classical Toda chain. We do not

give a complete list of references, which can be found in [5]. For us the important fact
concerning the classical system is that it allows the separation of variables [8, 9]. Consider
zeros of the polynomialB(λ):

B(λ) = b
n−1∏
j=1

(λ− γj )

and the variables3j ≡ D(γj ). Notice that3j = 3(γj ) where3(λ) is the eigenvalue of
M(λ). The variablesγj , log3j are canonocally conjugated which can be shown following
[5] using (2):

{γi, log3j } = δi,j .
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From detM(λ) = 1 it follows thatA(γj ) = 3−1
j . One can reconstruct the matrixM(λ)

from γ1, . . . , γn−1, 31, . . . , 3n−1, a1 andb. The symplectic form is written as

ω =
n−1∑
j=1

d log3j ∧ dγj + d log b ∧ da1.

The 1-formα (ω = dα) is

α =
n−1∑
j=1

log3j dγj + logb da1.

Let us take other coordinates on the phase space, namely,γ1, . . . , γn−1, t2, . . . , tn
(defined byT (λ) = λn + λn−1t1+ λn−2t2+ · · · + tn), t1 ≡ a1 andb. From

3j = 3(γj ) = 1
2(T

(
γj )+

√
T (γj )2− 4

)
one easily finds the expression for the symplectic form in these variables

ω =
n−1∑
j=1

n∑
k=2

γ n−kj√
P(γj )

dtk ∧ dγj + d log b ∧ da1

whereP(λ) = T 2(λ)− 4. Thus the equations of motion take the form

{T (λ), γj } =
√
P(γj )

∏
k 6=j

λ− γk
γj − γk

{T (λ), b} = λn−1b.

(4)

Only the first n − 1 equations are really interesting. They are linearized by the Abel
transformation:{

T (λ),

n−1∑
k=1

∫ γk

σj

}
= λj−1

whereσj are first kind Abelian differentials on the spectral curveµ2 = P(λ):

σj = λj−1

√
P(λ)

dλ.

We associate the ‘times’τ1, . . . , τn−1 with t2, . . . , tn:

∂

∂τj
F ≡ ∂jF = {tj+1, F }.

The evolution of
∑n−1

k=1

∫ γk σj with respect to times is linear.
The above considerations apply to any orbit of the Lie–Poisson group. We want now

to consider specific reality conditions which correspond to the Toda chain. It can be shown
[8, 9] that the conditions in question are:

(i) The polynomialT (λ) of degreen hasn real zeros. Moreover its local maxima are
not below 2 and its local minima are not above−2. So, all the zeros of the polynomial
P(λ) are also real, they are denoted byλ1 < λ2 < · · · < λ2n.

(ii) The polynomialB(λ) has real zerosγ1, . . . , γn−1 which belong to the ‘forbidden
zones’:λ2k < γk < λ2k+1.

The equations of motion (4) preserve these conditions. The hyperelliptic Riemann
surfaceµ2 = P(λ) has 2n branch points (λj ). Its genus equalsn−1. We present the surface
as two complex planes with the cuts along(−∞, λ1], [λ2, λ3], . . . , [λ2n,∞) identifying the
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banks of the cuts on two sheets in usual way. The canonocala-cyclesaj are taken as ones
encircling the cuts [λ2j , λ2j+1] for j = 1, . . . , n − 1. Topologically the pointsγj move
along the cyclesaj .

Define the normalized holomorphic differentials

ωj = Ajkσk
such that

1

2π

∫
aj

ωk = δj,k.

Then

θj =
n−1∑
k=1

∫ γk

ωj

are real angles of the Jacobi variety, and the dynamics describes a linear motion along this
real torus. One can invert the Abel transformation expressing the symmetric functions of
γ1, . . . , γn−1 (recall that they coincide withb1, . . . , bn−1) as functions of the Jacobi variety
(functions ofθ ’s) using the Riemannθ -function but we shall not need the explicit formulae.
The anglesθ and the timesτ are related linearly:

θj =
n−1∑
l=1

Ajlτn−l

so, using theθ -function formulae mentioned above one can resolve the equations of motion
expressingbj asbj = bj (τ1, . . . , τn−1).

From the point of view of algebraic geometry the monodromy matrixM(λ) gives
an affine model of hyperelliptic Jacobian, and the functionsbj (τ ) are the generalized
Weierstrass functions [10]. In the case of genus one (n = 2) the functionγ (τ1) = b1(τ1) is
the usual Weierstrass function which satisfies the second-order differential equation

∂2
1γ =

1

2

d

dγ
P (γ ). (5)

One of the results of our further analysis will be in finding certain second-order partial
differential equations for generalized Weierstrass functions which can be thought of as
generalizations of (5).

Let us consider the ring of generalized Weierstrass functions with coefficients in
t1, . . . , tn−1, i.e. the ring of polynomials

F(t1, . . . tn, b1, . . . , bn−1).

Consider further all possible derivatives of these polynomials with respect toτi :

∂
k1
1 . . . ∂

kn−1

n−1F(t1, . . . , tn, b1, . . . , bn−1). (6)

The equations we are looking for correspond to all possible linear combinations of the
functions (6) which vanish due to equations of motion. To understand the origin of these
equations we have to return to our mechanical considerations.

Mechanically one understands the derivatives∂i as Hamiltonian vector fields. Using
the Poisson brackets (2) one can express (6) as a function ofa1, . . . , an, b1, . . . , bn−1,
c̃2, . . . , c̃n+1, d2, . . . , dn i.e. as an element of the algebraA0. We put forward the following.

Conjecture 1.Every element ofA0 can be presented as a linear combination of the
expressions (6).
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We were not able to find a complete proof of this statement; however, the consideration
of examples supports it. Further indirect support of this conjecture will be provided by the
calculation of characters given below.

Assuming that the conjecture is true one realizes that the way of presenting an element
of A0 as a linear combination of the expressions (6) may be not unique. Indeed, let us
calculate the character of the space span by (6). We prescribe the degreei to ∂i which is
consistent with the Poisson brackets (2). Obviously, the character is

1

[n− 1]![n]![ n− 1]!
> χ(q)

whereχ(q) is the character (3). So, there must be a linear dependence between the functions
(6) which is responsible for differential equations on the generalized Weierstrass functions.
Moreover, there is a criterion which allows one to judge whether the set of equations is
complete. Indeed, to show the completeness of the equations one has, obviously, to prove
that taking them into account leads to the correct character (3).

Let us find the equations in question. To this end we shall use the Fourier transform.
Consider a functionF(t1, . . . tn, b1, . . . , bn−1). The variablestj are the integrals of motion
(and the moduli of the Riemann surface) and the variablesbj are the functions on the Jacobi
variety due to the equations of motion. Hence

F(t1, . . . tn, b1(τ ), . . . , bn−1(τ ))
∑

k1,···,kn−1

e−i6kj θj

×
∫ 2π

0
dθ ′1 . . .

∫ 2π

0
dθ ′n−1F(t1, . . . , tn, b1(θ

′), . . . , bn−1(θ
′))ei6kj θ ′j

whereθj =
∑

l Ajlτn−l . Let us undo the Abel transformation inside the integrals:

F(t1, . . . , tn, b1(τ ), . . . , bn−1(τ ))

eql
1

det(A)

∑
k1,...,kn−1

e−i6kj θj

∫
a1

dγ1√
P(γ1)

. . .

∫
an−1

dγ1√
P(γn−1)

∏
i<j

(γi − γj )

×F̃ (t1, . . . , tn, γ1, . . . , γn−1)
∏
j

ei8k(γj ) (7)

whereF̃ (t, γ ) = F(t, b(γ )) (recall thatbj are elementary symmetric functions ofγ ’s). For
any k = {k1, . . . , kn−1} we define

8k(γ ) =
∫ γ

kjωj .

Deriving (7) we needed to take into account the Jacobian of the Abel transformation. Later
we shall relate the integrals in (7) to the quasiclassical limit of the matrix elements in the
quantum Toda chain. The equations of motion correspond to vanishing of all the integrals
in (7). Let us explain the possible reasons for these integrals to vanish.

Consider first the term in (7) withk = 0 which is nothing but the average ofF over
the Jacobi variety (the trajectory):

〈F 〉 = 1

det(A)

∫
a1

dγ1√
P(γ1)

. . .

∫
an−1

dγ1√
P(γn−1)

∏
i<j

(γi − γj )F̃ (t, γ ). (8)

There are two reasons for this integral to vanish. The first one is obvious, it is due to
existance of exact forms. With an arbitrary polynomialL(γ ) associate the polynomial

Dt(L)(γ ) = P(γ )dL(γ )

dγ
+ 1

2

dP(γ )

dγ
L(γ ).
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We marked explicitly the dependence on the moduli (integrals of motion)t = {t1, . . . , tn}
which enters throughP(γ ).

There is an obvious proposition.

Proposition 1.The following integral vanishes∫
c

1√
P(γ )

Dt(L)(γ ) = 0 (9)

for any polynomialL and any closed cyclec.

Hence the integal (8) vanishes if

F̃ (t, γ ) =
n−1∑
i=1

1∏
j 6=i (γi − γj )

Dt(L)(γi)G(γ1, . . . , γ̂i . . . , γn−1)

for any polynomialL and any symmetric polynomial ofn − 2 variablesG (both of them
can be also polynomials of parameterst). This property means in particular that by adding
exact forms one can reduce the degree of the polynomialF̃ in everyγj up to n.

The second reason for the integral (8) to vanish is due to the Riemann bilinear identity.
Consider the antisymmetric polynomial of two variables

Ct(γ1, γ2) = Rt(γ1, γ2)− Rt(γ2, γ1) (10)

where

Rt(γ1, γ2) =
√
P(γ1)

d

dγ1

(
1

γ1− γ2

√
P(γ1)

)
.

For any two cycles on the Riemann surface one has∫
c1

∫
c2

1√
P(γ1)

1√
P(γ1)

Ct (γ1, γ2) = c1 ◦ c2

where◦ means the intersection number. Since the cyclesaj do not intersect one has the
following proposition.

Proposition 2.For any twoa-cyclesaj andak the following integral vanishes:∫
aj

∫
ak

1√
P(γ1)

1√
P(γ1)

Ct (γ1, γ2) = 0.

Hence the integral (8) vanishes if

F̃ (t, γ ) =
∑
i<j

1

(γi − γj )
∏
l 6=i,j (γi − γl)(γj − γl)

Ct (γi, γj )G(γ1, . . . , γ̂i . . . , γ̂j . . . , γn−1).

Let us consider now the case of arbitraryk = {k1, . . . , kn−1}. Introduce the polynomials
St,k:

i
n−1∑
j=i

kjωj (γ ) = St,k(γ )√
P(γ )

dγ.

Integrating by parts one gets the following three simple propositions.

Proposition 1′. For any polynomialL define the polynomial

Dt,k(L)(γ ) = Dt(L)(γ )− St,k(γ )
∫ γ

0
L(γ ′)St,k(γ ′) dγ ′
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then the following integral vanishes for anya-cycle:∫
aj

dγ√
P(γ )

ei8k(γ )Dt,k(L)(γ ) = 0.

Proposition 2′. Define the polynomial

Ct,k(γ1, γ2) = Ct(γ1, γ2)− Sk(γ1)

∫ γ1

0

St,k(γ )− St,k(γ2)

γ − γ2
dγ

+Sk(γ2)

∫ γ2

0

St,k(γ )− St,k(γ1)

γ − γ1
∂γ

then for any twoa-cyclesaj andak the following integral vanishes:∫
aj

dγ1√
P(γ1)

∫
ak

dγ1√
P(γ2)

ei8k(γ2)ei8k(γ1)Ct,k(γ1, γ2) = 0.

There is one more identity which is trivial in the casek = 0.

Proposition 3′. For anya-cycle the following integral vanishes:∫
aj

dγ√
P(γ )

ei8k(γ2)St,k(γ ) = 0.

From these three propositions one finds the following partial differential equations on
the symmetric functions ofγ :

(1) For any polynomial one variableL and any symmetric polynomial ofn−2 variables
G the equation holds:
n−1∑
i=1

1∏
j 6=i (γi − γj )

Dt(L)(γi)G(γ1, . . . γ̂i . . . , γn−1)−
n−1∑
l,m=1

∂l∂m

×
[ n−1∑
i=1

1∏
j 6=i (γi − γj )

γ n−1−l
i

∫ γi

0
L(γ )γ n−1−m dγ G(γ1, . . . γ̂i . . . , γn−1)

]
= 0. (11)

(2) For any symmetric polynomial ofn− 3 variablesG the equation holds:

C(G) ≡
∑
i<j

1

(γi − γj )
∏
l 6=i,j (γi − γl)(γj − γl)

Ct (γi, γj )G(γ1, . . . γ̂i . . . γ̂j . . . , γn−1)

−
n−1∑
l,m=1

∂l∂m

[∑
i<j

1

(γi − γj )
∏
l 6=i,j (γi − γl)(γj − γl)

×G(γ1, . . . γ̂i . . . γ̂j . . . , γn−1)(
γ n−l−1
i

∫ γi

0

γ n−1−m − γ n−1−m
j

γ − γj dγ − γ n−l−1
j

∫ γj

0

γ n−1−m − γ n−1−m
i

γ − γi dγ

)]
= 0. (12)

(3) For any symmetric polynomial ofn− 2 variablesG the equation holds:

Q(G) ≡
n−1∑
l=1

∂l

[ n−1∑
i=1

1∏
j 6=i (γi − γj )

γ n−l−1
i G(γ1, . . . γ̂i . . . , γn−1)

]
= 0. (13)
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One must add to the equations (11)–(13) their trivial consequences: i.e. the equations
obtained from them by applying an arbitrary number of∂i . We claim that in this way all
the equations of motion can be described.

Let us illustrate this point considering the simple examplen = 2. In that case genus is
equal to 1 and we have only one variableγ . The equations (12) and (13) are trivial, so we
are left with (11). Let us takeL(γ ) = γ p, p = 0, 1, . . . . Then (11) turns into

pγ p−1P(γ )+ 1

2
γ p

d

dγ
P (γ ) = ∂2

1

(
1

p + 1
γ p
)

(14)

and we have only one timeτ1 in that case. As has been said earlier the functionγ is
the WeierstrassP-function. The equation (14) coincides with the usual equation (5) when
p = 0. For otherp we get the equations on degrees ofγ which can be verified for the
Weierstrass function. Recall that we were considering the space of functions of the kind

∂k1F(t1, t2, γ ). (15)

Let us calculate the character of this space modulo the equations (14) and their trivial
consequences (those obtained by application of∂1). Obviously, using (14) we can express
any function of the kind (15) as a linear combination of

F0(t1, t2) F1(t1, t2)∂
m
1 γ F2(t1, t2)∂

m
1 γ

2.

So, the character is

1

[2]!

(
1+ q

[1]
+ q2

[1]

)
= 1

[2]!
(1+ q2)

which coincides with (3).
Let us consider the general case. We have the space of symmetric functions of

γ1, . . . , γn−1 with coefficients int1, . . . , tn on which the derivatives∂1, . . . , ∂n−1 act. We
can also consider the derivatives as coefficients, identifying this space withHn−1 which
is the space of symmetric polynomials ofγ1, . . . , γn−1 with coefficients int1, . . . , tn and
∂1, . . . , ∂n−1 (recall that∂i and tj commute). Substracting the exact forms (11) we finish
with the spacêHn−1 which is the subspace ofHn−1 defined by the condition that the degree
of the polynomials in everyγj does not exceedn. We define the spaceŝHj (j 6 n− 1) of
symmetric polynomials ofj variablesγi whose degree in every variable does not exceed
2n − j − 1 with coefficients int1, . . . , tn and ∂1, . . . , ∂n−1. The action of the operatorsC
andQ defined by (12) and (13) can be obviously extended to the action fromHn−3 to Hn−1

and fromHn−2 to Hn−1 respectively. It is also clear that the images of respectivelyĤn−3

and Ĥn−2 belong toĤn−1. One can easily generalize the definitions ofC andQ allowing
them to act respectively from̂Hj−2 to Ĥj and fromĤj−1 to Ĥj . For these operators one
has

[C,Q] = 0 Q2 = 0 Ker|Ĥj−2→Ĥj (C) = 0. (16)

Now noticing that deg(C) = 2 and deg(Q) = 1 one evaluates the character:

1

[n− 1]![n]!

{([
2n− 1
n− 1

]
− q

[
2n− 1
n− 2

]
+ q2

[
2n− 1
n− 3

]
− · · · + (−q)n−1

[
2n− 1

0

])
−q2

([
2n− 1
n− 3

]
− q

[
2n− 1
n− 4

]
+ q2

[
2n− 1
n− 5

]
− · · · + (−q)n−3

[
2n− 1

0

])}
= 1

[n]![ n− 1]!

([
2n− 1
n− 1

]
− q

[
2n− 1
n− 2

])
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which coincides with the character (3). There is an obvious similarity between what we
have done and paper [2].

3. Quantum Toda chain

Following Sklyanin [5] we shall use the same notations for the quantum analogues of
classical objects that have been used in the classical case. The Hamiltonian of the quantum
periodical Toda chain is given by (1) withpj , qj being the canonical operators

[pi, qj ] = ih̄δi,j .

Consider the same definition ofL-operator and monodromy matrix as in classics. The
monodromy matrix satisfies the relations

R(λ− µ)(M(λ)⊗M(µ)) = (M(µ)⊗ I )(M(λ)⊗ I )R(λ− µ) (17)

with R(λ) being the quantumR-matrix:

R(λ) = λ− ih̄P .

The trace of the monodromy matrix providesn commutative integrals of motion.The center
of the algebra is created by the quantum determinant

A(λ)D(λ+ ih̄)− B(λ)C(λ+ ih̄) = 1. (18)

The idea of using the separated variables in quantum case goes back to [11]. It was
developed as a universal method by Sklyanin. Let us briefly review the method of separation
of variables following [5]. From the relations (17) one finds, in particular, that

[B(λ), B(µ)] = 0.

So, presenting the operatorB(λ) in the form

B(λ) = b
n−1∏
j=1

(λ− γj )

one gets a family of commuting operators:

[b, γj ] = 0 [γi, γj ] = 0.

As in the classical case the operatorsb anda1 = P commute with everything except between
themselves:

[a1, b] = ih̄b.

The idea of the method of separation of variables is in considering the model inb, γ -
representation. The canonically conjugated operator tob exists already: this isa1. The
canonically conjugated operators forγj are constructed as follows. Consider the operators

A(λ) = λn + λn−1a1+ · · · + an
D(λ) = λn−2d2+ · · · + dn.

Then it can be shown that the operators

3̃j = γ nj + γ n−1
j a1+ · · · + an

3j = γ n−2
j d2+ · · · + dn

(19)

satisfy

3̃j3j = 1 [3j, γg] = ih̄δj,k3j . (20)
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The order of multipliers in (19) is important.
It is possible to reconstruct the operatorsA(λ), B(λ), C(λ),D(λ) usinga1, b, γj ,3j . In

particular,

T (λ) =
n−1∑
k=1

∏
j 6=k

(
λ− γj
γk − γj

)
(3k +3−1

k )+
n−1∏
j 6=1

(λ− γj )
(
λ+ a1+

∑
γj

)
. (21)

The Hilbert space splits into a direct sum of orthogonal subspacesHp corresponding to
different eigenvaluesp of the zero-modea1. Let us consider the spaceH0, the solution in
other subspacesHp are obtained from the one forH0 by simple transformation. InH0 the
eigenfunctions ofT (λ) with the eigenvaluet (λ) in γ -representation can be looked for in
the form

〈t |γ 〉 =
n−1∏
j=1

Q(γj ).

Applying (21) one finds with the following equation forQ(γ ):

t (γ )Q(γ ) = Q(γ + ih̄)+Q(γ − ih̄) (22)

wheret (λ) is the eigenvalue ofT (λ) on |t〉. In the subspaceH0 this eigenvalue must be a
polynomial of the kind

t (λ) = λn +O(λn−2).

Equation (22) is an equation with two unknowns,t andQ, so at first glance it is rather
useless. However, assuming certain analytical properties ofQ(γ ) this single equation
actually defines the spectrum. Namely, require that the functionQ(γ ) is an entire function
of γ with infinitely many real zeros. Moreover, impose the following asymptotic:

Q(λ) ∼ cos

(
λn

h̄
log

(
λ

e

)
+ π

4

)
λ ∼ ∞

Q(λ) ∼ e
π
h̄
λn cos

(
λn

h̄
log

(
−λ
e

)
+ π

4

)
λ ∼ −∞.

(23)

The normalization ofQ is not the same as in [5]. Forn = 4k the functionQ differs from the
functionϕ from [5] by the multiplier exp(πλn/2h̄) which is in this case a quasiconstant i.e.
it does not disturb equations (22). Ifn 6= 4k the formulae of [5] require certain corrections
which are provided by equations (23). Our normalization basically coincides with the one
accepted in [12]. According to [12] it provides the only way to have correct quasiclassical
limit. We discuss this limit in the next section.

The main conjecture of the paper [5] is that the spectrum of the model is defined by all
the solutions to equations (22) with the analytical properties oft andQ described above
and the asymptotic behaviour ofQ given by (23). This conjecture was proven by Gaudin
and Pasquier [12].

Now we want to discuss the properties of the matrix elements of the operators. To
consider the matrix elements we need to know the scalar product in the space of functions
of γj . This scalar product was found by Sklyanin [5]. We repeat the essential steps because
again there will be a minor difference ifn 6= 4k. Consider an operatorO which is given by
a symmetric functionF(γ1, . . . , γn−1). The wavefunctions are real, so the matrix element
is given by

〈t |O|t ′〉 =
∫ ∞
−∞

dγ1 . . .

∫ ∞
−∞

dγn−1

n−1∏
j=1

Q(γj )Q
′(γj )F (γ1, . . . , γn−1)w(γ1, . . . γn−1)
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wherew is a certain weight. Requiring that the operatorT (λ) for realλ is self-adjoint and
using the formula (21) one concludes that

w(γ1, . . . , γn−1) =
∏
i<j

(γi − γj )w̃(γ1, . . . , γn−1)

where w̃(γ1, . . . , γn−1) is the ih̄-periodic entire function of its arguments. There are two
formal reasons for choosing particularw̃. First, everything under the integral is symmetric
with respect toγ1, . . . , γn−1 except for the multiplier

∏
i<j (γi − γj ) in w, so it does not

make sense to put iñw anything that can be killed by antisymmetrization. Secondly,
requiring convergence of the integrals one finds from the asymptotic (23) thatw̃ can
contain exp(−2πγjm/h̄) with 1 6 m 6 n − 1 . These two requirements fix̃w up to
antisymmetrization:

w̃(γ1, . . . , γn−1) =
n−1∏
j=1

e
2π
h̄
γj (j−n). (24)

Again, if n = 4k this essentially coincides with [5]; otherwise there is a minor discrepancy.
An informal reason for taking̃w in the form of (24) refers to the quasiclassics, and is

discussed in the next section.
Similarly to the classical case the algebra of observablesA0 is defined as the algebra

generated by all the coefficients ofA(λ), B̃(λ) = b−1B(λ), C̃(λ) = bC(λ), D(λ). The
commutation relations (17) and the quantum determinant (18) provide sufficiently many
relations to show that the quantum algebra of observables has the same size as the classical
one. To make this statement mathematically rigorous one says that their characters coincide.

Now we formulate an analogue of the conjecture 1 of the previous section.

Conjecture 2.Every quantum observableO can be presented in the form

O = GL(t1, . . . , tn)F (b1, . . . , bn−1)GR(t1, . . . , tn)

whereGL, F , GR are polynomials.

This conjecture looks more natural than its classical counterpart and explains the mystery
of the latter. The point is that there is no closed formula for the commutation relations of
T (λ) andB(µ) which would allow ordering of the operatorsti andbj .

Taking the matrix element between two eigenstates of the Hamiltonians one can
essentially neglect the polynomialsGL and GR because acting on the eigenstates they
produce the eigenvalues. Hence we are mostly interested in the matrix elements of the
operatorsO0 = F(b1, . . . , bn−1) which are given by the integrals of the kind

〈t |O0|t ′〉 =
∫ ∞
−∞

dγ1 . . .

∫ ∞
−∞

dγn−1

n−1∏
j=1

Q(γj )Q
′(γj )

×
∏
i<j

(γi − γj )
n−1∏
j=1

F̃ (γ1, . . . , γn−1)

n−1∏
j=1

e
2π
h̄
γj (j−n) (25)

where

F̃ (γ1, . . . , γn−1) = F(b1(γ ), . . . , bn−1(γ )). (26)

The function ∏
i<j

(γi − γj )
n−1∏
j=1

f̃ (γ1, . . . , γn−1)
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is an antisymmetric polynomial ofγ1, . . . , γn−1. Every antisymmetric polynomial can be
presented as a linear combination of Schur functions, so, without loss of generality we can
replace (26) by

det(Fi(γj ))

for some polynomials of one variableF1, . . . , Fn−1. Then the matrix element can be
presented as a determinant of an(n− 1)× (n− 1)-matrix composed of one-fold integrals:

det

(∫ ∞
−∞

Q(γ )Q′(γ )Fi(γ )e
2π
h̄
γ (j−n)

)
dγ. (27)

We consider the integral∫ ∞
−∞

Q(γ )Q′(γ )F (γ )e−
2π
h̄
γ k dγ (28)

as a deformation of hyperelliptic integral. The study of the properties of these integrals is
very important for understanding the matrix elements of operators in the model.

Since the quantum algebra of observables has the same character as the classical one the
equations (11)–(13) must have their quantum counterparts. Hence there must be identities
for the integrals (28) from which these quantum counterparts follow. These identities can
indeed be found, and we shall describe them in the same order as in the classical case.

Let us introduce the operation1 which attaches to every functionF(γ ) the function

1(F)(γ ) = F(γ + ih̄)− F(γ − ih̄).

The operation1−1 is not always defined, but on polynomials it is. For any polynomialL

one can define a polynomialF such thatF(γ ) = 1−1(L)(γ ). For uniqueness we require
also that1−1(L)(0) = 0. Consider the integral (28) withQ(γ ), Q′(γ ) satisfying equations
(22) with the eigenvaluest (γ ) and t ′(γ ). For any given polynomialL(λ) construct the
polynomial

(L)t,t ′(γ ) = t (γ )1−1(Lt)(γ )+ t ′(γ )1−1(Lt ′)(γ )− t (γ )1−1(Lt ′)(γ − ih̄)

−t ′(γ )1−1(Lt)(γ − ih̄)− L(γ )t (γ )t ′(γ )+ L(γ + ih̄)− L(γ − ih̄). (29)

Then we have the following analogue of the propositions 1 and 1′.

Proposition 1′′. For any 16 k 6 n− 1 the following integral vanishes:∫ ∞
−∞

Q(γ )Q′(γ )D(L)t,t ′(γ )e−
2π
h̄
γ k dγ = 0. (30)

Using theseq-exact forms (29) we can always reduce the degree of the polynomial
F(γ ) under the integral (28) in order that it does not exceed 2n− 2. So, we are left with
a finite number of different integrals (28) withF(γ ) = γ j , j = 0, 1, . . . ,2n − 2. These
integrals are subject to further relations.

In order to define a quantum analogue of the polynomialCt(γ1, γ2) (10), we need some
preparation. Consider the function

U(γ, δ) = t (γ )− t (δ)
γ − δ .

The notation1−1(U(·, δ))(γ ) means that1−1 is applied to the first argument, i.e.

1(1−1(U(·, δ)))(γ ) = U(γ, δ).
The functionU ′ is defined in the same way replacingt by t ′.
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Consider the antisymmetric polynomial of two variables

Ct,t ′(γ1, γ2) = Rt,t ′(γ1, γ2)− Rt,t ′(γ2, γ1)

whereRt,t ′(γ1, γ2) is defined as follows:

Rt,t ′(γ1, γ2) = t (γ1)1
−1(U(·, γ2))(γ1)+ t ′(γ1)1

−1(U ′(·, γ2))(γ1)

−t (γ1)1
−1(U ′(·, γ2))(γ1− ih̄)− t ′(γ1)1

−1(U(·, γ2))(γ1− ih̄)

−1

2

1

γ1− γ2
(t (γ1)− t (γ2))(t

′(γ1)− t ′(γ2)).

We also have the following.

Proposition 2′′. For any 1< k, l < n− 1 the following integral vanishes:∫ ∞
−∞

∫ ∞
−∞

Q(γ1)Q
′(γ1)Q(γ2)Q

′(γ2)Ct,t ′(γ1, γ2)e
− 2π

h̄
γ1ke−

2π
h̄
γ2l dγ1 dγ2 = 0. (31)

Finally, let us define

St,t ′(γ ) = t (γ )− t ′(γ ).
Then we have the following.

Proposition 3′′. For any 1< k < n− 1 the following integral vanishes:∫ ∞
−∞

Q(γ )Q′(γ )St,t ′(γ )e−
2π
h̄
γ k dγ = 0. (32)

This is in fact the simplest relation, we consider it last for historical reasons. One
obvious consequence of this relation; is orthogonality of the wavefunction.

Let us say a few words about the proof of all these relations. Consider the simplest one
(32). We have

Q(γ )Q′(γ )St,t ′(γ ) = Q(γ )Q′(γ )(t (γ )− t ′(γ )) = Q(γ + ih̄)Q′(γ )+Q(γ − ih̄)Q′(γ )
−Q(γ )Q′(γ + ih̄)−Q(γ )Q′(γ − ih̄).

So,∫ ∞
−∞

Q(γ )Q′(γ )St,t ′(γ )e−
2π
h̄
γ k dγ =

∫ ∞
−∞

Q(γ + ih̄)Q′(γ )e−
2π
h̄
γ k dγ

+
∫ ∞
−∞

Q(γ − ih̄)Q′(γ )e−
2π
h̄
γ k dγ −

∫ ∞
−∞

Q(γ )Q′(γ + ih̄)e−
2π
h̄
γ k dγ

−
∫ ∞
−∞

Q(γ )Q′(γ − ih̄)e−
2π
h̄
γ k dγ.

By shift of contour the first integral cancels the fourth one and the second integral cancels
the third one. The shift of contour is possible because the functionQ behaves asymptotically
on the line Im(γ ) =constant, essentially in the same way as it behaves at the real axis. The
relations (30) and (31) are proven similarly, but that requires more sophisticated calculations.

Using equations (30)–(32) we can write down equations similar to (11)–(13) which
would guarantee that the number of operators (character of the algebra of observables) is
correct. The corresponding calculation does not differ from the one presented earlier for
the classical case.
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4. Quasiclassical case

We had a number of identities described by propositions 1, 1′, 1′′; 2, 2′, 2′′; 3′, 3′′. They
appear to be reflections of the same structure. The goal of this section is to explain the
relation between the different levels of deformation.

Consider the quasiclassical quantization of the Toda chain. We had the following
formulae for the symplectic form and corresponding 1-form in the coordinatest andγ :

α =
n−1∑
j=1

log3(γj ) dγj

ω = dα =
∑
j=1

n∑
k=2

γ n−kj√
P(γj )

dtk ∧ dγj .

(33)

In this section we shall ignore the contribution from the centre of mass variablesa1 andb
which is easy to find if needed. Using these formulae one immediately writes a quasiclassical
proposal for the wavefunction of the states with eigenvaluest in γ -representation:

9t(γ ) = µ 1
2 exp

(
1

ih̄

∫ γ

α

)
=
∏
i<j

(γi − γj ) 1
2

n−1∏
j=1

(
1

P(γj )

)1
4

exp

(
1

ih̄

∫ γj

log3(γ ) dγ

)
(34)

whereµ is defined as follows

∧n−1(ω) = µ dγ1 ∧ . . . ∧ dγn−1 ∧ dt2 ∧ . . . ∧ dtn.

The relation of the formula (34) to the exact quantum formulae that we had before is
clear.

(1) The multiplier
∏
i<j (γi−γj )

1
2 is a piece of the weight of integrationw (25). Another

one will come from the second wavefunction in the matrix elements. The wavefunction
without this multiplier will be denoted bỹ9t(γ ).

(2) The function9̃t (γ ) splits into a product of the expressions(
1

P(γj )

)1
4

exp

(
1

ih̄

∫ γj

log3(γ ) dγ

)
which has to be related to the quasiclassical limit of the functionQ. One should be
careful here because the function log3(γ ) is multivalued, so, the branches must be defined.
Moreover, we would probably need linear combination of the wavefunctions corresponding
to different branches.

Recall that

3(γ ) = 1
2

(
T (γ )+

√
T 2(γ )− 4

)
where T (λ) is a polynomial of degreen. The polynomialP(γ ) = T 2(γ ) − 4 has 2n
real simple rootsλ1 < · · · < λ2n. We define the function3(γ ) on the plane with the
cuts along the intervals;I0 = (−∞, λ1], I1 = [λ2, λ3], . . . , In = [λ2n,∞). Requiring that
log3(γ ± i0) are real forγ > λ2n then, obviously,

log3(γ + i0)+ log3(γ − i0) = 0 γ ∈ In.
Continuing analytically log3(γ ) into the plane with the cuts one finds that
¯log3(γ ) = log3(γ̄ ) and log3(γ + i0)+ log3(γ − i0)

= 2π i(n− j) γ ∈ Ij .
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The variableγj belongs classically toIj . So, we need the wavefunction real on the
entire real axis and not containing the factors exp(− 1

h̄
s) with s real when all the variables

are in the classically permited places. This requires, first, taking different brances of log3

for different γj and, second, taking a sum of two wavefunctions withγj + i0 andγj − i0
for everyγj . The result is

9̃t (γ ) =
∏

e
π
h̄
(j−n)γjQqc(γj )

where

Qqc(γ ) = V (γ + i0)+ V (γ − i0) V (γ ) =
(
− 1

P(γ )

)1
4

exp

(
1

ih̄

∫ γ

log3(γ ) dγ

)
.

The branch of log3 is defined above;(− 1
P(γ )

)
1
4 is real positive forλ2j−1 < γ < λ2j .

To ensure thatQqc(γ ) is a single-valued function in the plane with the cuts the Bohr–
Sommerfeld quantization condition must hold

Jj =
∫
aj

log3(γ ) dγ = πh̄(2nj + 1). (35)

The integralsJj are the classical actions. The cuts ofQqc come from condensation of zeros
of the quantumQ in the quasiclassical limit.

Let us consider now the quasiclassical limit ¯h→ 0 of the matrix elements. This limit
makes sense literally if two condition are satisfied:

(1) The quantum numbers are large. In our case it means that the zones [λ2j , λ2j+1] do
not collapse.

(2) The states|t〉 and |t ′〉 are close, i.e. the eigenvalues of the Hamiltonians are close:
t ′j − tj = O(h̄).

Consider the matrix element (25) for such close states. It consists of the integrals∫ ∞
−∞

Q(γ )Q′(γ )Fi(γ )e
2π
h̄
(j−n)γ dγ.

From the quasiclassical estimation ofQ, Q′ one concludes that∫ ∞
−∞

Q(γ )Q′(γ )Fi(γ )e
2π
h̄
(j−n)γ dγ

h̄→0−→ 4
∫
Ij

1√
P(γ )

cos

(
1

h̄

∫ γ

Re(log3(γ ′ + i0)) dγ ′ + π
4

)
× cos

(
1

h̄

∫ γ

Re(log3′(γ ′ + i0)) dγ ′ + π
4

)
Fi(γ ) dγ.

We have

2 cos

(
1

h̄

∫ γ

Re(log3(γ ′ + i0)) dγ ′ + π
4

)
cos

(
1

h̄

∫ γ

Re(log3′(γ ′ + i0)) dγ ′ + π
4

)
= cos

(
1

h̄

∫ γ

Re(log3′(γ ′ + i0)− log3(γ ′ + i0)) dγ ′
)

− sin

(
1

h̄

∫ γ

Re(log3′(γ ′ + i0)+ log3(γ ′ + i0)) dγ ′
)
.

The second term in the r.h.s. can be thrown away because it is rapidly oscillating in the
classical limit. The variation log3(γ ) − log3′(γ ) is estimated as follows. Consider the
classical solution withTcl(λ) = t (λ) wheret (λ) is one of the eigenvalues. This is the place
where using the same notations for classical and quantum observables can be misleading,
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so we explicitly mark the classical ones. The eigenvaluet ′(λ) = Tcl(λ)+ δT (λ). One has
(in further calculations we neglect contributions of order o(h̄)):

δ log3(γ ) ≡ log3′(γ )− log3(γ ) = δT (γ )√
P(γ )

.

How to find δT (γ )? The quasiclassical states are subject to the Bohr–Sommerfeld
quantization conditions (35). The quantum numbersnj are quasiclassically large:nj =
O(h̄−1), but their differences for the close states are finitekj ≡ n′j − nj = O(1). Hence

δ

∫
aj

log3(γ ) dγ =
∫
aj

δT (γ )√
P(γ )

dγ =
n−1∑
l=1

δtn−l+1

∫
aj

γ l−1

√
P(γ )

dγ = h̄kj . (36)

The matrix

A−1
lj =

∫
aj

γ l−1

√
P(γ )

dγ

is the inverse for the matrix used in the definition of the normalized Abelian differentials
ωj . Hence

δtn−l+1 = h̄kjAjl
which means that

δ log3(γ ) dγ = h̄
∑

kjωj .

Thus the quasiclassical matrix element for the close states is

〈t |O|t ′〉 =
∫
I1

dγ1√
P(γ1)

. . .

∫
In−1

dγ1√
P(γn−1)

∏
i<j

(γi − γj )F (γ1, . . . , γn−1)
∏
j

2 cos(8k(γj )).

(37)

Recall the notation8k(γ ) =
∫ γ
kjωj . This is the same expression as for the Fourier

coefficient in (7). At first glance there are two disagreements: in (7) we integrate overaj ,
and we have exp(i8k(γj )) under the integral. Actually, these two disagreements compensate
each other becauseaj = (Ij + i0)− (Ij − i0) and8k(γ + i0)+8k(γ − i0) = 0 whenγ ∈ Ij .
Notice that the states|t〉 are not normalized.

It is not a surprise that we have found the Fourier coefficient as the quasiclassical limit
of the matrix element. We have performed all the calculations in order to have the complete
mathematical picture. On the other hand from the point of view of physics one can argue
as follows.

Consider the action-angle variablesJ1, . . . , Jn−1, θ1, . . . , θj . The Bohr–Sommerfeld
quantization in this variables does not give the correct quantum result, but is still correct
quasiclassically. Consider the eigenstate of Hamiltonians|t〉 and the eigenstates of the
angles|θ〉. Quasiclassically one has for the wavefunction:

〈t |θ〉 = 1√∏
Jk

exp

(
1

ih̄

∑
Jkθk

)
. (38)

Consider an operatorO. This operator can be, at least quasiclassically, ordered in such a
way thatJ ’s are to the left ofθ ’s. Then the classical shape of the corresponding observable
on the solution with given values of integrals (t) is

Ocl(θ1, . . . , θn−1) = lim
h̄→0

〈t |O|θ〉
〈t |θ〉 .
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Insert the complete set of eigenstates into this formula

Ocl(θ1, . . . , θn−1) = lim
h̄→0

〈t |O|θ〉
〈t |θ〉 =

∑
t ′

〈t |O|t ′〉
〈t ′|t ′〉

〈t ′|θ〉
〈t |θ〉 . (39)

Quasiclassically only close states are important, for which we have from (38):

〈t ′|θ〉
〈t |θ〉 = e−i6kj θj .

Now it is obvious that (39) gives the Fourier transformation ofOcl(θ1, . . . , θn−1). It is clear
from equation (37) that quasiclassically

〈t ′|t ′〉 = 〈t |t〉 +O(h̄) 〈t |t〉 = det(A).

So there is complete agreement with formula (7).
Let us consider two close states introducing the notation:St,k(γ ) = t ′(γ )− t (γ ). The

quantum matrix element goes to the classical Fourier coefficient when ¯h→ 0. If we consider
the classical Fourier coefficient withk = 0 it describes the classical limit of the quantum
expectation value〈t |O|t〉. So, it is no surprise that we have the following sequences:

Dt,t ′(L)(γ )
h̄→0−→Dt,k(L)(γ )

k=0−→Dt(L)(γ )

Ct,t ′(γ1, γ2)
h̄→0−→Ct,k(γ1, γ2)

k=0−→Ct(γ1, γ2)

St,t ′(γ )
h̄→0−→St,k(γ ) k=0−→0.

(40)

Thus, there are two levels of deformation of the hyperelliptic differentials. The impression
is that the quantum deformation is very natural, and that the classical mechanics appears as
a strange intermediate case.

5. Conclusions

The identities (30)–(32) present the main result of this paper. They show that the matrix
elements of the arbitrary operator in the quantum Toda chain can be expressed with the help
of finitely many integrals which possess remarkable properties.

There is a difference between what we have and the sine-Gordon theory in infinite
volume. Indeed, the matrix elements for the Toda chain are given by integrals of arbitrary
deformed differentials with respect to a fixed half-basis of deformed cycles. In the sine-
Gordon case we took an arbitrary half-basis. The reason for that is the difference in the
type of reality conditions.

In this connection it is very important to consider the deformation of the Toda chain with
a trigonometricR-matrix and more complicated reality conditions, which is much closer
to the sine-Gordon case. We hope that in this situation there would be a complete duality
between deformed differentials and deformed cycles.
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